A Construction Method of Fuzzy Classifiers Using Confidence-weighted Learning
نویسندگان
چکیده
Incremental algorithms for fuzzy classifiers are studied in this paper. It is assumed that not all training patterns are given a priori for training classifiers, but are gradually made available over time. It is also assumed that the previously available training patterns can not be used afterwards. Thus, fuzzy classifiers should be modified by updating already constructed classifiers using the available training patterns. In this paper, a confidence-weighted (CW) learning algorithm is applied to fuzzy classifiers for this task. A series of computational experiments are conducted in order to examine the performance of the proposed method comparing that method with the conventional learning algorithm for fuzzy classifiers. c © 2013 The Authors. Published by Elsevier B.V. Selection and peer-review under responsibility of KES International.
منابع مشابه
Fuzzy Weighted Associative Classifier: a Predictive Technique for Health Care Data Mining
In this paper we extend the problem of classification using Fuzzy Association Rule Mining and propose the concept of Fuzzy Weighted Associative Classifier (FWAC). Classification based on Association rules is considered to be effective and advantageous in many cases. Associative classifiers are especially fit to applications where the model may assist the domain experts in their decisions. Weigh...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملFuzzy Weighted Associative Classifier based on Positive and Negative Rules
Construction of effective and accurate classifier is one of the challenges facing by the researchers. Many experiments have shown that Associative Classifier is significantly more accurate than the traditional classifiers. To classify the quantitative data, Fuzzy Associative Classifier was introduced and is also proved as an effective prediction model. Mining of negative association rules have ...
متن کاملUsing Hybrid Fuzzy PROMETHEE II and Fuzzy Binary Goal Programming for Risk Ranking: A Case Study of Highway Construction Projects
Multi attribute decision making methods are considered as one of the most useful methods for solving ranking problems. In some decision making problems, while the alternatives for corresponding criteria are compared in a pairwise comparison manner, if the criteria are inherently fuzzy, debates will arise in ranking alternatives due to the closeness of the values of the criteria. In this researc...
متن کامل